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A B S T R A C T   

In recent years, there has been a great interest in utilizing technology in mental health research. The rapid 
technological development has encouraged researchers to apply technology as a part of a diagnostic process or 
treatment of Neurodevelopmental Disorders (NDDs). With the large number of studies being published comes an 
urgent need to inform clinicians and researchers about the latest advances in this field. Here, we methodically 
explore and summarize findings from studies published between August 2019 and February 2022. A search 
strategy led to the identification of 4108 records from PubMed and APA PsycInfo databases. 221 quantitative 
studies were included, covering a wide range of technologies used for diagnosis and/or treatment of NDDs, with 
the biggest focus on Autism Spectrum Disorder (ASD). The most popular technologies included machine learning, 
functional magnetic resonance imaging, electroencephalogram, magnetic resonance imaging, and neurofeed-
back. The results of the review indicate that technology-based diagnosis and intervention for NDD population is 
promising. However, given a high risk of bias of many studies, more high-quality research is needed.   

1. Introduction 

According to the Diagnostic and Statistical Manual of Mental Dis-
orders (DSM-5) (American Psychiatric Association, 2013), Neuro-
developmental Disorders (NDDs) are a group of conditions with an early 
onset, characterized by various deficits that impair one’s functioning in 
the personal, academic, social, or occupational area. Within recent 
years, NDDs became one of the most common diagnoses in the pediatric 
population (Trauner, 2019), among which, the most frequently diag-
nosed are learning disabilities, with a prevalence of approximately 8 % 
(Boat and Wu, 2015), developmental language disorders (7 %) (Laaso-
nen, 2018), Autism Spectrum Disorder (ASD, 2 %) (Baio, 2018; Xu, 
2018; Schendel and Thorsteinsson, 2018), and Attention-Deficit Hy-
peractivity Disorder (ADHD, 2 %) (Boat and Wu, 2015; Willcutt, 2012). 
The diagnosis itself can be challenging, as various co-morbidities are less 
of an exception and more of a rule within the NDD population (Year-
gin-Allsopp, 2008; Uddin et al., 2019). Another challenge is a certain 
degree of phenotypic overlap between different disorders, as well as a 

great variability of symptoms and functioning levels across individuals 
with the same diagnosis (Wall, 2012; Coe et al). Early detection of NDDs 
is of great importance as it allows fast intervention that improves chil-
dren’s prognosis and maximizes treatment outcomes (Wu, 2019) due to 
high neuroplasticity in the first years of human life (Ismail et al., 2017). 
However, patients referred for an NDD assessment often experience 
major delays in receiving a diagnosis. According to a recently published 
study (Hollis, 2018), 40 % of families referred for an ADHD assessment 
were still awaiting a diagnosis six-months after the initial visit. Also, 
research conducted in Canada (Penner et al., 2018) indicated that the 
median total waiting time from referral to receipt of ASD diagnosis is 7 
months. Moreover, once diagnosed, the families often deal with sub-
stantial delays in treatment initiation and a lack of satisfactory treat-
ment monitoring (Hall, 2016). For instance, only 20 % of young people 
with Tourette Syndrome have access to behavioral tic therapy and those 
who do receive it, typically get to attend less than half of the recom-
mended number of sessions (Cuenca, 2015; Verdellen, 2004). One of the 
reasons for this situation is a lack of trained therapists, especially in 
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geographically remote regions (Hollis, 2017), as well as insufficient 
clinical time that would allow delivering best care practices (Hall, 
2016). Therefore, the importance of identifying time-effective and 
easy-to-access strategies for both diagnosis and treatment of NDDs is 
clear. 

Technology has the potential to improve the availability of early 
screening, as well as later treatment. The number of technological in-
terventions targeting NDDs has been growing exponentially (Valentine, 
2020). For instance, there has been a lot of interest in supporting ASD 
diagnosis using machine learning technology (Baygin, 2021; Bajestani, 
2019; Caly, 2021; Cavallo, 2021). Across the literature, it is applied to 
different types of data such as neuroimaging data, eye movement data, 
kinematic data, audio samples, or standardized assessments (e.g., 
Autism Diagnostic Interview, Revised (Rutter et al., 2003) or the Social 
Responsiveness Scale (Constantino and Gruber, 2012) (Hyde, 2019). In 
the last case, the researchers often seek to improve the accuracy of 
standard tests, given that they sometimes fail to distinguish one condi-
tion from another (Hyde, 2019). Growth in volume and variety of 
available data can be observed largely due to the affordability of in-
struments and infrastructure used to collect it but also thanks to the 
trend of sharing it between scientists and clinicians all over the world. 
One example of such an initiative is the widely used Autism Brain Im-
aging Data Exchange (ABIDE) dataset (http://fcon_1000.projects.nitrc. 
org/indi/abide/) (Di Martino, 2014) that includes resting-state func-
tional magnetic resonance imaging (rs-fMRI) data along with corre-
sponding structural MRI and phenotypic information of ASD and 
neurotypical participants. Another example is the ADHD-200 repository 
(Bellec, 2017) which contains the same type of neuroimaging data but 
acquired from ADHD and typically developing (TD) subjects. On top of 
that, the availability of many open-source machine learning toolkits in 
combination with rise in computational power and processing technol-
ogies create opportunities for researchers to utilize machine learning in 
diagnostic processes (Hyde, 2019). 

The term ‘technology’ encompasses a broad range of devices, modal-
ities, and techniques: virtual reality, eye-tracking, wearable technology, 
mobile apps/tablets, different forms of medical imaging, neurofeedback, 
biofeedback, robots, transcranial magnetic stimulation, electroencepha-
logram (EEG), mixed reality, serious games, and others. Recently pub-
lished systematic review conducted by Valentine and colleagues 
(Valentine, 2020) explored clinical efficacy, service efficiencies, eco-
nomic and user impact, as well as readiness for clinic adoption of tech-
nologies used to assess, monitor, and treat NDDs. The authors explored 
studies published until August 2019 and excluded technologies related to 
neuroimaging, neuro-stimulation/modulation/feedback/training, or 
biomarker tests/devices. In our work we did not exclude these technolo-
gies in order to have a full picture of the current trends. Moreover, in order 
to not overlap with the mentioned review, and to give an overview of the 
most updated technologies, we decided to start our search period from 
August 2019. Although it might seem like a short time to be covered in a 
systematic review, given the recent rapid growth of technology-related 
publications and technological development per se, covering nearly 3 
years of research can be arguably more meaningful than synthesizing 
evidence from a very long period of time. There is an urgent need to update 
clinicians, therapists, and professionals in general, on the latest advances 
regarding the use of technology in NDD diagnosis/treatment and sum-
marizing the recent findings can provide them with a clearer view of what 
has been achieved so far. Additionally, it will support researchers in 
making decisions regarding their future study directions. Recent sys-
tematic reviews focused mostly on the use of specific technologies applied 
to a specific disorder only, e.g., serious games for people with intellectual 
disability (Terras, 2018), social robots in ASD therapy (Pennisi, 2016), or 
the use of neurofeedback in ADHD (Van Doren, 2019). Given the great 
interest in utilizing technology in mental health research that has been 
observed within recent years, the aim of this review is to analyze and 
organize the newest trends in technology application for diagnosis and 
treatment of NDDs. The present work synthesizes existing quantitative 

research and methodically explores the current state of evidence in this 
area. 

2. Methods 

2.1. Search strategy and inclusion/exclusion criteria 

The review has been elaborated following The Preferred Reporting 
Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines 
(Page, 2021). The review protocol was registered and can be accessed 
through PROSPERO (CRD42020160939). The search was carried out in 
PubMed and APA PsycInfo databases. The structure of our search 
strategy was based on Population, Intervention, Comparison, and Out-
comes (PICO) domains (Table 1). It was then developed using Medical 

Table 1 
Search strategy based on Population, Intervention, Comparison, and Outcomes 
(PICO) for PubMed.  

Domain Search strategy 

Population „Neurodevelopmental Disorders”[Mesh] OR „Neurodevelopmental 
disorder” OR „Developmental disorder” OR “developmental delay” 
OR “developmental delays” OR “developmental difficulty” OR 
“developmental difficulties” OR “Pervasive development” OR 
„pervasive developmental disorder” OR “Pervasive disorders” OR 
"Child Development Disorders, Pervasive"[Mesh] OR „PDD” OR 
“Global Developmental Delay” OR "Attention Deficit and Disruptive 
Behavior Disorders"[Mesh] OR "Attention Deficit Disorder with 
Hyperactivity"[Mesh] OR „ADHD” OR „Hyperkinesis” [Mesh] OR 
"Autism Spectrum Disorder"[Mesh] OR "Asperger Syndrome"[Mesh] 
OR "Autistic Disorder"[Mesh] OR „Autis* ” OR „ASD” OR „Asperger” 
OR "Communication Disorders"[Mesh] OR "Childhood-Onset Fluency 
Disorder"[Mesh] OR "Social Communication Disorder"[Mesh] OR 
"Speech Sound Disorder"[Mesh] OR "language disorders"[Mesh] OR 
"Developmental Disabilities"[Mesh] OR "Intellectual 
Disability"[Mesh] OR „Mentally Disabled Persons” [Mesh] OR 
"Specific Learning Disorder"[Mesh] OR "Learning Disabilities"[Mesh] 
OR "learning disorders" OR "Dyscalculia"[Mesh] OR "Dyslexia"[Mesh] 
OR "Dyslexia, Acquired"[Mesh] OR „Specific reading disorder” OR 
„Disorder of written expression” OR „Mathematics disorder” OR 
"Motor Skills Disorders"[Mesh] OR "Stereotypic Movement 
Disorder"[Mesh] OR "Tic Disorders"[Mesh] OR "Tourette 
Syndrome"[Mesh] OR “Neurodevelopmental motor disorder” OR 
“Developmental Coordination Disorder” OR „Rett Syndrome” [Mesh] 
OR „Speech articulation disorder” OR „phonological disorder” OR 
"language development disorders" [Mesh] OR “Receptive language 
disorders” OR “Receptive language disorder” OR "stuttering"[Mesh] 
OR „stammering” OR „cluttering” OR "speech disorders"[Mesh] 

Intervention "technology" [Mesh] OR "evoked potentials" [Mesh] OR 
"magnetoencephalography" [Mesh] OR "diffusion tensor imaging" 
[Mesh] OR "positron-emission tomography"[Mesh] OR "tomography, 
emission-computed, single-photon" [Mesh] OR "spectroscopy, near- 
infrared" [Mesh] OR "transcranial magnetic stimulation" [Mesh] OR 
"robotics"[Mesh] OR "Electroencephalography" [Mesh] OR "eye 
movements" [Mesh] OR "eye movement measurements"[Mesh] OR 
“eye tracker” OR “eye tracking” OR “eye-tracker” OR “eye-tracking” 
OR "wearable electronic devices"[Mesh] OR "galvanic skin response" 
[Mesh] OR „sensor” OR "magnetic resonance imaging" [Mesh] OR 
"Neurofeedback" [Mesh] OR "Artificial Intelligence"[Mesh] OR 
"Diffusion Magnetic Resonance Imaging" [Mesh] OR "wireless 
technology" [Mesh] OR "remote sensing technology" [Mesh] OR 
"biomedical technology" [Mesh] OR “Technology Assessment, 
Biomedical" [Mesh] OR „Machine Learning” [Mesh] OR „Deep 
Learning” [Mesh] OR „Neural Networks, Computer” [Mesh] OR 
„Computational Intelligence” OR „Inventions” [Mesh] OR 
„Telemedicine” [Mesh] OR „eHealth” OR „mHealth” OR „telehealth” 
OR „mobile applications” [Mesh] OR „Video Games” [Mesh] OR 
„Videoconferencing” [Mesh] OR „fitness trackers” [Mesh] OR „real- 
time monitoring device” OR „Virtual Reality” [Mesh] OR „augmented 
reality” [Mesh] OR „interactive multimedia” OR „interactive 
software” OR „digital media” OR „software” [Mesh] OR „interactive 
technolog* " OR „wearable technolog* " OR „mHealth technolog* ” 
OR "mobile technolog* " or "sensor technolog* " 

Comparison Not applicable 
Outcome Not applicable  
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Subject Headings (MeSH) terms to properly detect the available litera-
ture on the topic. We decided to not focus only on devices per se but on 
any technological support for diagnosis/treatment that could potentially 
improve the current methods, therefore the Intervention section also 
includes terms related to machine learning and artificial intelligence. 
The PubMed search was limited to humans. In APA PsycInfo, we also 
chose to search for correlated and equivalent terms. There was no lan-
guage restriction. We performed a systematic search strategy of articles 
indexed from August 2019 to February 2022. We chose to start our 
search in August 2019 because the latest systematic review on the field 
ended its search strategy in that period (Valentine, 2020). 

Inclusion criteria: 1) studies involving human subjects, 2) using at 
least one of the technologies reported under Intervention in Table 1 (in 
addition to technologies considered by Valentine and colleagues (Val-
entine, 2020), the Intervention domain in Table 1 includes other most 
commonly used types of technologies identified through a preliminary 
search in PubMed), 3) including participants with at least one of the 
NDDs described in Table 1, and 4) focusing on treatment and/or diag-
nosis (in order to identify technologies potentially applicable in clinical 
practice). Moreover, to test the direct use of technology within the 
population of interest, technology had to be used directly on the in-
dividuals with NDDs and not e.g., on subjects’ parents, practitioners etc. 

Exclusion criteria: editorials, comments, surveys, theses disserta-
tions, case studies, case series, animal studies, studies including partic-
ipants without NDDs and analyzing them together with those with an 
NDD diagnosis (in order to avoid confounders), or focusing on genetic 
data, or biological samples such as fecal or blood samples (to avoid 
excessive heterogeneity of the included studies). 

2.2. Study selection process 

The works retrieved using the search strategy were imported into 
Rayyan (Ouzzani, 2016), which is a web and mobile application that 
supports conducting systematic reviews and collaborating with other 
authors. The process of identification, screening, and inclusion of studies 
is presented in the PRISMA Flow Diagram (Fig. 1; (Page, 2021). One 
author (MOR) removed the duplicates, and two independent authors 

(MOR and MM, or AC) checked the records for eligibility, first by 
screening the abstracts and then making their final decisions by reading 
the full articles. In case of any conflicts between the two authors 
regarding the inclusion/exclusion of a certain study, a third author was 
consulted. 

2.3. Risk of bias/quality assessment 

For the risk of bias/quality assessment evaluation, various tools, 
depending on the study design, were used. For the case-control and 
cohort studies the appropriate tools from Newcastle – Ottawa Quality 
Assessment Scale (NOS) were chosen (Wells, 2017). The maximum 
number of points for both types of studies is 9, and higher scores indicate 
higher quality. The included randomized controlled trials (RCTs) were 
evaluated with the revised Cochrane risk of bias tools for parallel-group 
trials (Yang et al., 2017) or crossover trials, accordingly (Wu et al., 
2017). The tool is divided into 5 or 6 domains, depending on the study 
design, such as, for instance, Bias arising from the randomisation process, 
Risk of bias arising from period and carryover effects in a crossover trial, or 
Bias due to deviations from intended intervention. Each domain includes a 
few questions that can be answered with Yes, Probably Yes, No, Prob-
ably no, No information, or Not applicable. The quality of the 
before-after (pre-post) studies with no control group was assessed using 
The National Institutes of Health (NIH) quality assessment tool 
(https://www.nhlbi.nih.gov/health-topics/-
study-quality-assessment-tools). As suggested in (Ma, 2020) for 
controlled before-and-after study, The Effective Practice and Organisa-
tion of Care (EPOC) Risk of Bias Tool for randomized trials (https://e-
poc.cochrane.org/resources/epoc-resources-review-authors) was used, 
scoring the first two items: “random sequence generation” and “alloca-
tion concealment” as “higher risk”. 

2.4. Data extraction 

The extracted information for each study included: title, author, year 
of publication, country, funding source, conflicts of interest, type of the 
study design, description of the target population (number of 

Fig. 1. PRISMA 2020 Flow Diagram (Page, 2021) presenting study screening and selection process.  
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participants, gender, age, and type of NDD diagnosis), tool(s) for the 
NDD assessment, inclusion/exclusion criteria of the target population, 
technology used for diagnosis and/or intervention, its operator, and 
where it was applied (e.g., home, laboratory), targeted (bio)marker/ 
symptoms, and outcomes. Full information can be seen in the Supple-
mentary material I. Due to the large heterogeneity of the included 
studies, not only in terms of wide range of NDDs and used technologies 
but also study design, age and gender of the population, outcome 
measures, and follow-up periods, it was not possible to conduct a meta- 
analysis. Therefore, we chose to synthesize the studies narratively. 

3. Results 

Between August 2019 and February 2022, 4108 studies were iden-
tified through the database search. Additional 7 records were selected 
for screening by reference mining. After removing the duplicates, 3717 
remaining records were checked for eligibility by two independent au-
thors (first through abstract screening, and then by reading 543 full 
articles). Finally, 221 studies were included. 

The included research was conducted in 42 different countries. The 
biggest number of articles come from the USA (22.6 %), followed by 
China (19.5 %), Italy (5.9 %), Spain (4.5 %), Iran, and India (both 4.1 
%). The number of publications per country is presented in Fig. S1, in the 
Supplementary material II. 

In 23.1 % of publications (n = 51) the number of female/male par-
ticipants was not specified. Only 10.4 % of the studies (n = 23) enrolled 
at least 50 % of female subjects. Moreover, 6.3 % of studies (n = 14) 
were conducted on entirely male sample. 

In 66.1 % of studies (n = 146), the authors declared no known 
competing interests, 18.6 % (n = 41) of publications did not include any 
information in this regard, and 15.4 % (n = 34) disclosed certain con-
flicts of interest. 

More studies (68.8 %) used technology for diagnosis rather than 
treatment of NDDs. The vast majority of articles (61.1 %) focused on 
ASD (Baygin, 2021; Bajestani, 2019; Caly, 2021; Cavallo, 2021; 
Abdulhay et al., 2022; Alcañiz, 2022; Al-Hiyali, 2021; Alvarez-Jimenez, 
2020; Amat, 2021; Ameis, 2020; An, 2021; Antão, 2020; Ardulov, 2021; 
Asgari et al., 2021; Bakheet and Maharatna, 2021; Beaumont, 2021; 
Brittenham, 2022; Carpenter, 2021; Casanova, 2021; Chen, 2021; Chen, 
2021; Cibrian, 2020; Crimi, 2021; Crowell, 2020; De Luca, 2021; de 
Moraes and A.P, 2020; Direito, 2021; Eill, 2019; ElNakieb, 2021; Ema-
nuele, 2021; Frasch, 2021; Fu, 2021; Fujino, 2021; Gabard-Durnam, 
2019; Ganesh et al., 2021; Gao, 2021; Gepner, 2022; Germann, 2021; 
Ghosh and Guha, 2021; Górriz, 2019; Graa and Rekik, 2019; Grossi, 
2019; Grossi et al., 2021; Gui, 2021; Gürbüz and Rekik, 2021; Haweel, 
2021; Haweel, 2021; He, 2021; Hu, 2021; Huang, 2020; Huberty, 2021; 
Ingalhalikar, 2021; Jensen, 2021; Jiang, 2020; Jiang, 2020; Kang, 2019; 
Kang, 2021; Kashef, 2022; Khozaei, 2020; Khullar et al., 2021; Kim, 
2022; Kojovic, 2021; Konicar, 2021; Kou, 2019; Kumar, 2020; Kumar 
and Das, 2021; Lanka, 2020; Leblanc, 2020; Li, 2021; Li et al., 2020; Li, 
2019; Li, 2019; Liang et al., 2021; Long, 2021; Ma et al., 2021; Manic, 
2021; Marino, 2020; Meera, 2021; Mujeeb Rahman and Monica Sub-
ashini, 2022; Nabil et al., 2021; Nag, 2020; Ni, 2021; Oliveira, 2021; 
Peck, 2021; Penev, 2021; Peng, 2021; Pereira, 2019; Perochon, 2021; 
Pham, 2020; Putra, 2021; Rafiei Milajerdi, 2021; Rinaldi, 2021; 
Romero-García, 2021; Ruan, 2021; Salem, 2021; Sarovic, 2020; Shao, 
2021; So, 2019; So, 2020; Sosnowski, 2022; Spiegel, 2019; Spronk, 
2021; Squarcina, 2021; Sun, 2021; Sun, 2021; Tawhid, 2021; Tummala, 
2021; van den Berk-Smeekens, 2020; Van der Donck, 2019; Vukićević, 
2019; Wang et al., 2019; Wang, 2019; Wang, 2020; Wang, 2021; Wang, 
2022; Wang, 2022; Wang, 2022; Washington, 2021; Wieckowski and 
White, 2020; Xipolitopoulos et al., 2021; Xu, 2021; Yalçin and Rekik, 
2021; Yang, 2021; Yang, 2021; Yin et al., 2021; Zhang, 2021; Zhang, 
2021; Zhang and Wang, 2022; Zhao, 2020; Zhao, 2021; Zhao, 2021; 
Zhao, 2021; Zheng, 2020; Zorcec, 2021; Zu, 2019) followed by ADHD 
(24.9 %), (Ardulov, 2021; Jiang, 2020; Lanka, 2020; Spronk, 2021; Zu, 

2019; Abbas, 2021; Aggensteiner, 2019; Aggensteiner, 2021; Aradhya 
et al., 2020; Arnold, 2021; Barth, 2021; Benzing and Schmidt, 2019; 
Bleich-Cohen, 2021; Boroujeni et al., 2019; Cai, 2021; Cai, 2021; Chang, 
2019; Chen et al., 2019; Dallmer-Zerbe, 2020; Damiani, 2021; Das and 
Khanna, 2021; Deiber, 2021; Dobrakowski and Łebecka, 2020; Gallen, 
2021; Gao et al., 2020; Griffiths, 2021; Groeneveld, 2019; Gu, 2021; Ha, 
2022; Hadas, 2021; Häger, 2021; Hasslinger et al., 2022; Johnstone, 
2021; Kaur, 2019; Khan, 2021; Kiiski, 2020; Kim, 2021; Laniel, 2020; 
Liu, 2021; Medina, 2021; Moghaddari et al., 2020; O’Neill, 2022; 
Owens, 2021; Öztekin, 2021; Purper-Ouakil, 2022; Qi, 2021; 
Shema-Shiratzky, 2019; Shi, 2021; Skalski, 2021; Tang, 2022; Tor, 
2021; Tosun, 2021; Wang, 2021; Zhang-James, 2021; Zhao, 2022), and 
learning disabilities (8.1 %) (Appadurai and Bhargavi, 2021; Devillaine, 
2021; Drotár and Dobeš, 2020; Ebrahimi, 2022; Eroğlu, 2021; Formoso, 
2021; Maggio, 2021; Marchesotti, 2020; Pecini, 2019; Pérez-Elvira 
et al., 2021; Peters, 2021; Ramezani, 2021; Rello, 2020; Rodríguez, 
2021; Svensson, 2021; Usman, 2021; Zahia, 2020; Zhang, 2021). Fewer 
scientists focused on DCD (2.7 %) (EbrahimiSani, 2020; Grohs, 2020; 
Kuijpers, 2019; Neto, 2020; Neto, 2021; Smits-Engelsman et al., 2020), 
language disorder/language delay/specific language impairment/de-
velopmental speech-language disorders (1.8 %) (Borovsky et al., 2021; 
Justice et al., 2019; Sharma and Singh, 2022; Zhao, 2021), Tourette 
syndrome (1.4 %) (Duan, 2021; Dyke, 2019; Kahl, 2021), intellectual 
disability (1.4 %) (Ha, 2022; Ahn, 2021; Smith, 2021), developmental 
delay (0.9 %) (Lloyd, 2021; Ouyang, 2020), and Rett syndrome (0.5 %) 
(Fabio, 2022). Numbers of studies investigating specific conditions are 
reported in Table 2. 

The most common technologies used for support of diagnosis of 
NDDs were: machine learning (n = 135, 61.8 %), functional magnetic 
resonance imaging (fMRI, n = 45, 20.4 %), EEG (n = 37, 16.7 %), 
magnetic resonance imaging (MRI, n = 26, 11.8 %), and eye-tracking 
(n = 11, 5.0 %), followed by mobile apps/tablets (n = 5, 2.3 %), com-
puter vision (n = 3, 1.4 %), motion capture systems (n = 3, 1.4 %), 
virtual reality (n = 2, 0.9 %), and magnetoencephalography (MEG, 
n = 2, 0.9 %). Furthermore, single studies used: Raspberry Pi with 
Touch Screen, transcranial magnetic stimulation, functional near- 
infrared spectroscopy (fNIRS), magnetic resonance spectroscopy 
(MRS), ultrasonography (USG), electrocardiography (ECG), thermal 
imaging, smart glasses, smartphone, digitizer that allowed kinematic 
analysis of handwriting movements, force plate, robot, and a computer 

Table 2 
Number of studies and their type (investigating diagnosis/treatment) for each 
condition.  

Condition No. of 
studies 

No. of studies 
covering 
treatment 

No. of studies 
covering 
diagnosis 

ASD  130 31 99 
ADHD  49 17 32 
Learning disabilities  18 9 9 
DCD  6 6 0 
Both ASD and ADHD covered 

in one article  
5 0 5 

Tourette syndrome  3 2 1 
Developmental Delay  2 0 2 
Intellectual Disability  2 2 0 
Intellectual Disability and 

ADHD covered in one 
article  

1 1 0 

Rett syndrome  1 1 0 
Language disorder  1 0 1 
Language delay  1 0 1 
Specific language 

impairment  
1 0 1 

Developmental Speech- 
Language Disorders  

1 0 1 

Total  221 69 (31.22 %) 152 (68.78 %) 

ASD: Autism Spectrum Disorder, ADHD: Attention-Deficit/Hyperactivity Dis-
order, DCD: Developmental Coordination Disorder 
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application with a dry-sensor single-channel portable EEG headset. 
Regarding the treatment studies the most frequently used technolo-

gies included: neurofeedback (n = 17, 7.7 %; based on EEG, n = 15, 
fNIRS, n = 1, or fMRI, n = 2), mobile apps/tablets (n = 10, 4.5 %), 
virtual reality (n = 8, 3.6 %), robots (n = 7, 3.2 %), transcranial mag-
netic stimulation (n = 6, 2.7 %), eye-tracking (n = 5, 2.3 %), trans-
cranial current stimulation (n = 4, 1.8 %), and Xbox Kinect (n = 4, 1.8 
%). Less popular technologies included: biofeedback (n = 3, 1.4 %, 
hemoencephalographic, or based on electromyogram, or heart rate 
variability), computer game-based intervention (n = 3, 1.4 %), tele-
health (n = 3, 1.4 %), Nintendo Wii Console (n = 2, 0.9 %), and mixed 
reality (n = 2, 0.9 %). Moreover, single studies utilized: elastic touch- 
display “BendableSound”, online software package that simulta-
neously slows down visual and auditory signals for slowness therapy, 
augmented reality, motion capture system, smart speakers, computer-
ized magnocellular-based visual-motion training, and radio electric 
asymmetric conveyer (REAC). It should be noted that some of the studies 
included more than one type of technology, therefore the given numbers 
do not add up to 221. 

3.1. Risk of bias results 

Out of 33 randomized parallel-group trials included, only 1 was 
scored as having a low risk of bias, 21 had a high risk of bias, and 11 
raised some concerns (Supplementary material II, Fig. S2). The lowest 
scores were observed in the following domains: Bias due to missing 
outcome data and Bias in measurement of the outcome. In each of these 
domains 11 studies were scored as having a high risk of bias (Supple-
mentary material II, Fig. S3). Also, since most of the researchers did not 
pre-register their data analysis intentions, the majority of studies 
(n = 26) were scored as raising some concerns in the Bias in selection of 
the reported result domain. All 5 randomized cross-over trials had a high 
risk of bias (Supplementary material II, Fig. S4). None of them had a low 
risk of bias in the following domains: Bias arising from the randomisation 
process, Bias due to deviations from intended interventions in a crossover trial 
(effect of assignment to intervention), and Risk of bias in selection of the 
reported result in a crossover trial (Supplementary material II, Fig. S5). 
NOS assessment scale results are reported in Supplementary material II, 
Figs. S6, and S7. Regarding the results of the EPOC tool, only 1 out of 10 
studies was scored as having “lower risk” (Supplementary material II, 
Fig. S8). None of the 21 included pre-post studies was rated as having a 
good quality (Supplementary material II, Fig. S9). The detailed assess-
ment of each included study is available in Supplementary material II 
(Tables S1-S8). 

3.2. Investigated (bio)markers and targeted symptoms 

In this section we summarize the investigated (bio)markers and 
symptoms covered in the included studies. We organized them into three 
relatively wide categories and presented a summary of findings from 
each of them. Taking into consideration the large number of studies, as 
well as their variety, results of each of them can be accessed in the 
Supplementary material I. 

3.2.1. Brain structure and activity 
56.6 % (n = 125) of included studies investigated brain structure 

and/or activity. 85.6 % (n = 107) of them were focused on diagnosis. 
Specifically, there was a big interest in detection of ASD (n = 69) and 
ADHD (n = 33), followed by dyslexia (n = 4), developmental delay 
(n = 2), learning disability (n = 1), Tourette Syndrome (n = 1), and 
developmental speech-language disorders (n = 1). The treatment 
studies covered the following conditions: ADHD (n = 9), ASD (n = 5), 
Tourette Syndrome (n = 2), learning disability (n = 1), and dyslexia 
(n = 1). Half of them applied neurofeedback training, and others uti-
lized either transcranial magnetic stimulation (n = 4), transcranial 
current stimulation (n = 3), virtual reality therapy (n = 1), or game- 

based intervention on an iPad (n = 1). 
The brain activity and structure were investigated using various 

tools. 47 studies analyzed data from EEG, out of which 35 covered di-
agnoses. For instance, Bakheet and Maharatna (Bakheet and Maharatna, 
2021) acquired EEG signals from autistic and TD children while pre-
senting to them three types of face expression. The algorithm trained on 
the happy stimulus dataset reached 100 % accuracy in differentiating 
between ASD and TD participants. Also, Peng and associates (Peng, 
2021) screened autism by acquiring and analyzing EEG data of subjects 
under positive and negative emotional stimulation. In another study, 
Zhao and colleagues (Zhao, 2021) conducted a recurrence quantitative 
analysis (RQA) that allowed derivation of features such as: determinism 
(DET), recurrence rate (RR), and length of average diagonal line (LADL) 
of EEG signals from different brain regions of autistic and neurotypical 
participants. Using data from the whole brain area and a support vector 
machine the authors achieved a maximum classification accuracy of 84 
%. Other researchers examined EEG signals of the brain’s C3 channel 
and presented differences among the topological features of complex 
networks as a method of ASD detection (Baygin, 2021). Furthermore, 
Gabard-Durnam and co-writers (Gabard-Durnam, 2019) found that EEG 
power trajectory during the first postnatal year differentiates ASD out-
comes at the age of 3. The study by Kang and colleagues (Kang, 2021) 
revealed differences in EEG entropy, power, coherence, and bicoherence 
between low-functioning autistic subjects and TD controls. 

EEG was also used to support ADHD diagnosis. For instance, Bor-
oujeni and associates (Boroujeni et al., 2019) analyzed the chaotic 
behavior of the EEG signals that allowed them to distinguish ADHD 
subjects from controls with an accuracy of 96.05 %. Chang and col-
leagues (Chang, 2019) studied multiple EEG features to detect ADHD of 
combined type in males. Examples of those features included: power 
ratio of the alpha/gamma bands, the average of the EEG signal, or power 
of the beta band in all spectral bands of the signal in male ADHD par-
ticipants. Other ideas for utilizing EEG in ADHD detection were: 
reconstructing the phase space of EEG signals (Kaur, 2019) or extracting 
features from RGB images that were formed from the theta, alpha, beta, 
and gamma frequency bands from continuous mental task EEG samples 
(Moghaddari et al., 2020). 

Only three studies included in this review utilized EEG for conditions 
other than ASD and ADHD. One of them was conducted by P é rez-Elvira 
and associates (Pérez-Elvira et al., 2021) who applied live z-score NF 
training for quantitative EEG normalization in school children with 
learning disabilities. Another one is a study by Lloyd and co-writers 
(Lloyd, 2021) who found that multichannel EEG recorded in preterm 
infants is a strong predictor of developmental delay at the age of 2 years. 
The last one successfully discriminated between participants with and 
without Tourette Syndrome by analyzing spatial patterns of the 
resting-state EEG network (Duan, 2021). 

Nearly 20 % of studies included in this systematic review presented 
analysis of either structural, functional, or effective brain connectivity. 
Most of them used public datasets such as ABIDE (Di Martino, 2014) and 
ADHD-200 (Bellec, 2017). In fact, among the 221 included studies, 35 
conducted an analysis of data from ABIDE dataset and 12 analysed data 
from ADHD-200. For example, Shao and colleagues (Shao, 2021) 
attempted to identify abnormal functional connections that could be a 
biological ground for diagnosis of ASD. They proposed a combined 
method of deep feature selection process and graph convolutional 
network. In the first step, each functional connectivity feature is 
weighted and a subset of them is chosen accordingly, (which is possible 
thanks to adding a sparse one-to-one layer between the input and the 
first hidden layer of a multilayer perceptron), and then, based on the 
chosen features and additional phenotypic information, the subjects are 
classified as ASD or TD. The authors verified this approach using the 
pre-processed ABIDE dataset and achieved an accuracy of 79.5 %. Very 
promising results were obtained by ElNakieb and associates (ElNakieb, 
2021) whose method reached the highest classification accuracy on 
ABIDE dataset among the included studies. The authors analysed white 
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matter connectivity, using diffusion tensor imaging (DTI) data of 125 
ASD and 120 TD subjects from ABIDE-II initiative. The high global 
balanced accuracy over the 5 imaging sites was up to 99 % with 5-fold 
cross-validation. Importantly, they were also able to identify the 
brain-area pairs that mostly contributed to reaching the final decision (e. 
g., retrolenticular part of the internal capsule in the left hemisphere & 
fornix cres/stria terminalis). Furthermore, those areas aligned with the 
findings from other studies investigating autism impairments (ElNakieb, 
2021). For instance, the internal capsule microstructure was previously 
shown to have an increased connectivity in subjects with ASD from 
childhood to adulthood (McLaughlin, 2018). 

20 studies investigated the brain anatomy (e.g., cortical surface area, 
cortical thickness, white matter volume) in order to distinguish between 
cases and controls. For instance, Sarovic and colleagues (Sarovic, 2020) 
analysed structural MRI data of individuals with and without ASD and 
found significant differences between the two groups within subcortical 
gray matter structures and limbic areas. The authors also estimated each 
subject’s individual summed total index that indicates whether their 
gross morphological brain pattern is in the direction of cases or controls 
and achieved a maximal 78.9 % cross-validation classification accuracy. 
Furthermore, Gürbüz and Rekik (Gürbüz and Rekik, 2021) investigated 
cortical surface area and minimum principle area in individuals with 
ASD, and Squarcina and associates (Squarcina, 2021) found increased 
cortical thickness in various brain regions of ASD children. On the other 
hand, a study by Öztekin and co-writers (Öztekin, 2021) showed that 
measures of cortical anatomy have little incremental value in dis-
tinguishing between children with and without ADHD. 

A few studies (n = 6) investigated brain activation in response to 
certain tasks or stimuli using an fMRI. 4 of them focused on diagnosis 
(ASD, n = 2; dyslexia, n = 1; ADHD, n = 1). Zahia and colleagues 
(Zahia, 2020) attempted to detect dyslexia based on volumes containing 
brain activation areas during three different reading tasks. The partici-
pants were divided into dyslexia, typical development, and monocular 
vision groups. The model was trained using a 3D Convolutional Neural 
Network and reached an overall average classification accuracy of 
72.73 %. Haweel and co-writers (Haweel, 2021) used task-based fMRI to 
create a brain map (indicating ASD severity level for each brain area), 
that can contribute to personalized diagnosis and treatment plans. The 
brain activation data was recorded during participants’ natural sleep, 
while an audio record of a narrator telling a story was played. Another 
study focused on ADHD detection by analyzing activation during tasks 
of working memory, inhibitory control, and reward processing (Owens, 
2021). Regarding the treatment studies, one of them utilized real-time 
fMRI-NF in order to achieve up-regulation of fusiform face area in in-
dividuals with ASD (Pereira, 2019), whereas another, targeted neural 
activity in the attention network of ADHD participants with deep 
transcranial magnetic stimulation (Bleich-Cohen, 2021). 

Brain activity was also assessed using fNIRS technology (n = 2). For 
instance, Xu and associates (Xu, 2021) analysed short-term spontaneous 
hemodynamic fluctuations and abnormalities of inferior frontal gyrus 
and temporal lobe, and successfully classified ASD and TD children with 
90.6 % sensitivity and 97.5 % specificity. Another study utilized 
fNIRS-NF training in order to reduce ADHD global scores (Barth, 2021). 
The authors showed that 61.9 % of the participants learned how to 
regulate the NF target parameters where the task was either to decrease 
(“deactivate”) or increase (“activate”) prefrontal O2Hb concentration. 
Also, magnetoencephalography (MEG) was used in two studies. Results 
of one of them (Zhao, 2021) showed, that infants’ neural non-native 
speech discrimination can significantly predict both individual differ-
ences in spoken grammar skills at 6 years of age and a presence or 
absence of a potential speech-language disorder. Specifically, the pre-
dictor was the prefrontal but not temporal mismatch response from the 
MEG experiment at 11 months. The other study (An, 2021) found al-
terations in oscillations and oscillatory coupling, reflecting the dysre-
gulation of motor gating mechanisms in autism and used these findings 
to classify ASD vs. control subjects, obtaining an AUC equal to 0.971. 

3.2.2. Core symptoms and other NDD related difficulties 
This category contains studies (n = 104) that targeted not only core 

symptoms of specific NDDs but also difficulties related to them that are 
common, yet not crucial for obtaining a diagnosis. 62.5 % (n = 65) of 
them utilized technology for treatment rather than diagnosis. Most of 
the studies focused on ASD (n = 53), ADHD (n = 26), and learning 
disabilities [n = 13; dyslexia (n = 8), unspecified learning disability 
(n = 2), dysgraphia (n = 2), and mathematical learning disability 
(n = 1)], followed by developmental coordination disorder (DCD, 
n = 6), intellectual disability (n = 3), specific language impairment/ 
language disorder/delay (n = 3), Tourette Syndrome (n = 2), and Rett 
syndrome (n = 1). 

41.3 % of studies (n = 43) targeted various cognitive processes such 
as attention (n = 11), executive functions (n = 10), reading (n = 6), 
language (n = 4), and others (e.g., perception, information processing 
speed). For instance, in a study by Gallen and co-writers (Gallen, 2021) 
neural, behavioral, and clinical metrics of attention were assessed in 
ADHD children before and after a 4-week at-home intervention on an 
iPad that targeted midline frontal theta circuitry. The results indicated 
improvements on both neural and behavioral measures of attention after 
the intervention. Furthermore, Peters and associates (Peters, 2021) 
conducted a study on population with dyslexia, which demonstrated 
that visual attention plays an important role in reading and might be 
trained using Action Video Games. The authors suggest it can be a 
motivational, fun, and engaging intervention for dyslexia. Ameis and 
colleagues (Ameis, 2020) conducted an RCT in which they compared 
repetitive transcranial magnetic stimulation (rTMS) targeting dorsolat-
eral prefrontal cortex vs. sham stimulation impact on executive func-
tions performance in ASD participants. The outcomes were measured 
using The Cambridge Neuropsychological Test Automated Battery SWM 
total errors and BRIEF Metacognition Index scores (Gioia, 2002). Even 
though the efficacy of a 4-week 20 Hz rTMS was not proved, an 
improvement in executive functions was observed in participants with 
lower baseline functioning in the active vs. sham group. Reading abili-
ties were often targeted in intervention studies on population with 
dyslexia. In a controlled before-and-after study, Eroğlu and associates 
(Eroğlu, 2021) investigated impact of a mobile app (Auto Train Brain) 
with EEG neurofeedback and multi-sensory learning methods on reading 
comprehension, reading speed and other reading abilities. The results 
indicated a significantly higher improvement in reading comprehension 
in the experimental compared to treatment-as-usual group and 
improved phonemic awareness and nonword spelling in both groups. 
Another study, conducted by Zorcec and colleagues (Zorcec, 2021), 
found an improvement in several developmental domains, including 
language skills, in autistic children, after interacting with a child-sized 
humanoid robot Kaspar and using a complementary app at home. The 
robot used facial and bodily expressions, gestures, as well as 
pre-recorded speech for interaction. A common measure of cognitive 
functioning was a reaction time, as well as omission, and commission 
errors (n = 6). In a study from Brazil (Antão, 2020), children with 
autism who played an augmented reality game, in which they had to 
identify correct numbers and alphabet letters, improved their reaction 
time after the intervention. 

Moreover, the ASD related symptoms covered in this review included 
social deficits (n = 14), motor skills (n = 8), emotion recognition and 
comprehension (n = 7), communication problems (n = 6), social 
attention (n = 5), or anxiety (n = 3). 25 studies focused on diagnosis 
and 28 covered various treatment approaches. One of the intervention 
ideas was to introduce a robot in a therapy program. For instance, in a 
study by Marino and associates (Marino, 2020) a plastic-bodied hu-
manoid robot acted as a co-therapist and provided emotional and 
communication prompts, as well as reinforcements. The social robot 
successfully boosted learning of socio-emotional understanding skills. 
Other researchers utilized an interactive virtual reality system with 
eye-tracking that allowed them to successfully enhance gaze sharing and 
gaze following in individuals with ASD (Amat, 2021). Furthermore, Nag 
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and colleagues (Nag, 2020) used smart glasses in order to analyze gaze 
patterns of children with ASD and neurotypical controls during an 
emotion recognition task. They trained a classifier that distinguished 
between the two groups but was unable to significantly outperform 
other models that used only age and gender features. Crowell and col-
leagues (Crowell, 2020) used mixed reality experiences with full-body 
interaction to check whether it could help reduce anxiety and 
encourage social initiation in children with ASD during play with a TD 
child. The mixed reality system, called The Lands of Fog (Mora-Guiard), 
consisted of a virtual environment projected onto a floor, physical ob-
jects, such as a butterfly net with LED lights tracked by the system, as 
well as visual and sound effects. The authors compared this approach 
with a standard LEGO social intervention strategy that uses toys, and 
construction tools as an aid to a caregiver, psychologist, or a therapist. 
The results showed that children in the experimental and control setting 
generated the same number of social initiations, and no significant dif-
ferences in the reported anxiety were found. Furthermore, in three 
studies (Leblanc, 2020; Nabil et al., 2021; Washington, 2021) re-
searchers aimed to detect autism by analyzing behavioral features from 
home videos. The evaluated features included expressive language, 
echolalia, eye contact, spontaneous gestures, emotion expression, 
communicative engagement, responsiveness, comforting others, 
aggression, sharing of excitement etc. They were rated by people with no 
previous experience in ASD detection. The best classification accuracy of 
91.79 % was obtained by Nabil and colleagues (Nabil et al., 2021) using 
backwards feature selection and support vector machine. They also 
worked with the biggest dataset, out of the three included studies, 
consisting of 116 subjects with autism, and 46 TD participants. An 
example of study investigating motor skills is a randomized crossover 
controlled trial conducted by de Moraes and associates (de Moraes and 
A.P, 2020). The authors investigated motor learning and transfer be-
tween real and virtual environments in young people with ASD and 
found that virtual methods may enhance learning of motor skills. Also, 
Li and colleagues (Li et al., 2020) used machine learning to automati-
cally identify postural control patterns of subjects with ASD. A force 
plate was used to collect a centre of pressure data during two conditions: 
eyes open and eyes closed. Using the naïve Bayes classifier, they 
managed to discriminate between children with and without autism 
with the highest accuracy of 0.90, specificity of 1.00, and sensitivity 
equal to 0.83. It is also worth mentioning, that 8 studies applied machine 
learning to already known standard tools, often along with some addi-
tional questions about the characteristics of an individual such as age, 
gender, ethnicity, whether the child was born with jaundice etc. In this 
case, rather than looking for new markers of NDDs, researchers 
attempted to optimize already existing screening processes. More spe-
cifically the used tools included: Quantitative Checklist for Autism in 
Toddlers (QCHAT) (Mujeeb Rahman and Monica Subashini, 2022; 
Romero-García, 2021), Autism Spectrum Quotient Adult (AQ-10 Adult) 
(Kumar and Das, 2021), AQ-10 Child (Xipolitopoulos et al., 2021), First 
Year Inventory 2.0 (Meera, 2021), Autism Diagnostic Interview-Revised 
(ADI-R) (Ardulov, 2021), and DSM-5 Diagnostic criteria for ASD-299.00 
(Khullar et al., 2021). Also, one study utilized non‑verbal aspects of 
social interaction from filmed Autism Diagnostic Observation Schedule 
(ADOS) assessment (Kojovic, 2021). Some of these studies produced 
promising results. For instance, Mujeeb Rahman and colleagues (Mujeeb 
Rahman and Monica Subashini, 2022) used deep neural networks for 
ASD detection, and the AUC on QCHAT and QCHAT-10 datasets with 
Polish toddlers were 97.18 % and 100 % respectively. 

Regarding the ADHD related symptoms and difficulties, the studies 
included in this review covered: inattention, hyperactivity, and/or 
impulsivity (n = 15), working memory (n = 5), motor skills (n = 3), as 
well as associated conduct problems, general psychopathology, 
emotional problems, and peer problems (n = 2). The majority of studies 
focused on treatment (69.2 %, n = 18) and most of them utilized neu-
rofeedback (55.6 %, n = 10) and virtual reality (16.7 %, n = 3). For 
instance, Purper-Ouakil and associates (Purper-Ouakil, 2022) attempted 

to demonstrate noninferiority of personalized at-home EEG neurofeed-
back training versus methylphenidate treatment. Even though they 
failed to do so, the results in both treatment groups showed significant 
pre–post improvements in core ADHD symptoms, as well as in a broader 
range of problems. Dobrakowski & Łebecka (Dobrakowski and Łebecka, 
2020) found a significant and long-term improvement of working 
memory in ADHD children who did 10–12 sessions of neurofeedback 
training with theta and beta frequency ranges individually adjusted to 
the child’s peak alpha frequency. Furthermore, Wang and colleagues 
(Wang, 2021) found that after theta/beta neurofeedback training, par-
ents reported fewer ADHD symptoms in their children on the Inattention 
and Hyperactivity/Impulsivity of the Strengths and Weaknesses of 
ADHD and Normal Behavior (SWAN) rating scale (Swanson, 2012). On 
the other hand, the RCT by Barth and colleagues (Barth, 2021) on an 
adult sample, showed equally significant core ADHD symptom im-
provements in semi-active electromyography biofeedback, fNIRS neu-
rofeedback, and EEG neurofeedback group, suggesting placebo- or 
non-specific effects. Other examples of research targeting ADHD symp-
toms include a study from 2019 (Benzing and Schmidt, 2019), where 
Benzing and Schmidt found positive effects of exergaming (in which 
users were projected directly into virtual reality on the screen and 
controlled the console through their body movements) on executive 
functions, general psychopathology, and motor abilities. Also, 
Shema-Shiratzky and co-writers (Shema-Shiratzky, 2019) investigated 
the impact of virtual reality on behavior and cognitive functions in 
children with ADHD. The participants of the study walked on a treadmill 
with a safety harness, while negotiating virtual obstacles. The 
post-training parental reports indicated a significant improvement in 
children’s psychosomatic behavior and social problems. Moreover, 
memory and executive functions were improved, and the effects were 
maintained at 6-weeks follow-up. 

Furthermore, 8 studies focused on diagnosis. In one of them, re-
searchers conducted a kinematic analysis of fast pen strokes in children 
with ADHD and controls (Laniel, 2020). They found that those with the 
diagnosis demonstrated poorer motor planning and execution, as well as 
greater variability in motor control. These differences allowed them to 
successfully distinguish between the two groups with the highest Area 
Under the Curve (AUC) score equal to 0.91. Also, Ardulov and col-
leagues (Ardulov, 2021) applied machine learning to ADI-R items to 
distinguish ASD from ADHD. Other researchers used pupillometric 
variation during a visuospatial working memory task as a marker of 
ADHD (Nag, 2020). The support vector machine classifier, trained on 
the obtained data, achieved 77.3 % sensitivity, and 75.3 % specificity in 
discriminating between cases and controls. The rest of the studies 
applied machine learning to either ADHD symptoms reported by parents 
and/or teachers, or some other behavioral features, in combination with 
other measures such as, EEG (n = 2), MRI (n = 1), MRS + DTI (n = 1), 
and eye-tracking (n = 1). 

Regarding learning disabilities, apart from cognitive processes 
mentioned above, the included studies explored: kinematic features 
extracted from graphomotor tests for detection of dysgraphia (Devil-
laine, 2021; Drotár and Dobeš, 2020), postural control in dyslexia 
(Ramezani, 2021), as well as emotional, cognitive, and behavioral 
symptoms associated with learning disabilities (Pérez-Elvira et al., 
2021). Also, Appadurai and colleagues (Appadurai and Bhargavi, 2021) 
proposed a set of significant eye movement features that can be used for 
building a predictive model of dyslexia. 

Furthermore, all studies on DCD population focused on treatment 
and targeted motor abilities. For instance, EbrahimiSani and associates 
(EbrahimiSani, 2020) found positive impact of virtual reality training on 
predictive motor control functions in this population, and Grohs and 
colleagues (Grohs, 2020) showed that motor cortex transcranial direct 
current stimulation did not enhance motor learning in children with 
DCD, as seen in other populations. Moreover, results of the study by 
Neto and co-writers (Neto, 2021) indicated that training with Nintendo 
Wii Console and both the Wiimote control and Wii Balance Board 
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accessories, elicited improvements in motor learning (measured by the 
change in obtained game scores over time). 

Also, the intellectual disability studies focused entirely on treatment. 
One of them successfully utilized smart speakers for improving speech 
intelligibility of adults for phrases related to device use, as well as un-
related words (Smith, 2021). Another one investigated the effect of 
virtual reality and computer game-based cognitive therapy on 
visual-motor integration (Ahn, 2021). A pre-post study design was used 
and the scores on The Bruininks-Oseretsky Test of Motor Proficiency-2 
(BOT-2) (Bruininks and Bruininks, 2005) significantly improved after 
the intervention. 

On the other hand, all 3 studies on specific language impairment/ 
language delay/disorder focused on diagnosis. Results of one of them, 
that used machine learning, indicated that being a boy, having a lower 
socioeconomic status, being older in age, and having poorer parent- and 
teacher-reported functional communication and literacy skills have a 
strong discriminatory value in distinguishing between children with and 
without clinically impaired language skills (Justice et al., 2019). In 
another study researchers built a predictive model of low language 
outcomes by applying machine learning and network science ap-
proaches to early language skills parental reports (Borovsky et al., 
2021). Furthermore, Sharma and Singh (Sharma and Singh, 2022) 
derived audio features from raw speech signals and achieved an accu-
racy of 100 % in discriminating between individuals with and without 
specific language impairment. 

Both Tourette syndrome studies aimed at lowering the number of tics 
in the affected individuals. Dyke and colleagues (Dyke, 2019) investi-
gated a potential positive effect of a single-session cathodal transcranial 
direct current stimulation on occurrence of these symptoms. The 
research revealed significantly lower tic impairment scores (assessed 
using video data) post-cathodal stimulation compared to post-sham 
stimulation but the interaction between time (pre/post) and stimula-
tion (cathodal/sham) turned out to be not significant. Results of the 
second study showed that a neuronavigated robotic bilateral repetitive 
transcranial magnetic stimulation of the supplementary motor area is 
feasible in children with Tourette syndrome and reduces their tic 
severity (Kahl, 2021). 

Furthermore, one of the intervention studies (Fabio, 2022) targeted 
intensity of stereotypies in Rett syndrome. The authors compared the 
use of a basic telerehabilitation and advanced telerehabilitation system 
equipped with eye-tracking tools so that the therapist could monitor a 
patient’s interaction with it during cognitive sessions. The advanced 
intervention also consisted of motor rehabilitation sessions that pro-
vided a 3D reconstruction of a patient’s skeleton superimposed on the 
video in real-time, which allowed for better observation of the partici-
pants’ potential movement improvements. The results revealed more 
marked reduction in stereotypies in the group using the advanced tele-
rehabilitation system compared to the basic one. 

3.2.3. Other features 
Taking into consideration that only 4.1 % of the studies (n = 9) 

included in this systematic review covered other features than those 
related to brain structure or activity, typical NDD symptoms, or diffi-
culties related to them, we decided to describe them altogether within 
one section. 

One of the approaches was to look for distinctive audio markers that 
could help differentiate between ASD cases and controls (n = 2). Kho-
zaei and colleagues (Khozaei, 2020) used high-quality voice recording 
devices and typical smartphones to collect cry samples of subjects with 
and without autism between 18 and 53 months. After pre-processing of 
the data, they trained a classifier and achieved sensitivity, specificity, 
and precision of 85.71 %, 100 %, and 92.85 % respectively, on male 
dataset, and 71.42 %, 100 %, and 85.71 %, on female dataset. 
Furthermore, Asgari and collaborators (Asgari et al., 2021) applied 
machine learning to speech features extracted from ADOS-2 conversa-
tional activities and achieved a maximum AUC of around 83 % when 

differentiating between ASD and TD participants. 
Moreover, heart rate variability (HRV) was investigated in one 

diagnostic study of ASD, and one treatment study of ADHD. Frasch and 
colleagues (Frasch, 2021) collected ECG data from school-age children 
with ASD, age-matched TD controls, and subjects with other psychiatric 
conditions characterized by altered HRV such as conduct disorder or 
depression. The researchers identified ASD specific features from time, 
frequency, and geometric signal-analytical domains that enabled 
discriminating autistic participants from their peers, with AUC equal to 
0.89. The ADHD study was conducted by Groeneveld and associates 
(Groeneveld, 2019), who explored the impact of combined Z-score NF 
and HRV biofeedback on severity of ADHD problems, HRV and 
breathing parameters, as well as quantitative EEG parameters. 

Other ideas included ASD detection by analysing children’s head 
turns in response to their names (Perochon, 2021), or skin temperature 
in various regions of the face while evoking emotions such as happiness, 
anger, or sadness (Ganesh et al., 2021). Also, Ruan and co-writers (Ruan, 
2021) attempted to classify photos as taken either by individuals with or 
without autism. In this case, the feature of interest was a saliency map 
from an input photo taken either of people, indoors, or outdoors. As it 
turned out, pictures taken by participants with autism, contained less 
salient objects, especially in the central visual field, and the discrimi-
nation between the two groups of subjects was quite successful (the 
model reached an accuracy of 81.3 % when classifying photos of peo-
ple). In another study, conducted by Zhao and colleagues (Zhao, 2021), 
children with ASD and controls were asked to answer ten yes or no 
questions. They were also encouraged to nod/shake their heads while 
doing so. The authors managed to distinguish between the ASD and TD 
groups with 92.11 % accuracy using the head rotation range in the 
nodding direction, and the amount of rotation per minute in the 
head-shaking direction as features fed to a decision tree classifier. The 
last study utilized ultrasound and biological measurements of babies to 
predict later ASD diagnosis (Caly, 2021). When minimizing the false 
positive rate, 96 % of TD and 41 % of ASD babies were identified with a 
positive predictive value of 77 %. 

3.3. Number and type of studies during the COVID-19 pandemic 

Fig. 2. shows the number of included interventional and non- 
interventional studies from each year. It can be observed that even 
though the systematic review covered only 5 months of research in 
2019, there were only 8 publications less included from this year than 
the whole year 2020. This initial drop in the number of studies was 
followed by 3.2 times more included records from the year 2021 
(n = 128). 

Fig. 2. Numbers of the included interventional and observational studies from 
each year. 
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4. Discussion 

The purpose of this systematic review was to synthesize the current 
trends regarding technology application in NDDs diagnosis and/or 
treatment. Such overview of the latest achievements can be a source of 
help not only for clinicians, and therapists working directly with in-
dividuals with NDDs, but also for researchers deciding their future study 
directions. 3717 records were screened and the number of included 
publications reached 221 even though the review covered only 2 years 
and 7 months of research. This shows a large interest in utilizing tech-
nology as support for treatment and diagnosis of NDDs. 

The studies included in this review are very heterogeneous. Not only 
do they cover a wide range of technologies (such as machine learning, 
fMRI, EEG, MRI, eye-tracking, mobile apps/tablets, neurofeedback, 
virtual reality, robots, transcranial magnetic stimulation, transcranial 
current stimulation, mixed reality, and others) but also, various NDDs, 
outcome measures, study designs, and population characteristics. Also, 
the investigated (bio)markers and symptoms vary across the included 
studies. What stands out is a large interest in applying machine learning 
algorithms to EEG, fMRI, or MRI data, especially for ASD and ADHD 
diagnosis. In fact, most of the included papers covered these two con-
ditions (ASD n = 135, ADHD n = 55), which was also observed in the 
previous systematic review conducted by Valentine and colleagues 
(Valentine, 2020). The reason for the increased interest in utilizing 
technology for treatment of individuals with ASD may lie in its potential 
to overcome communication difficulties that are common in this popu-
lation (Prelock and Nelson, 2012). Moreover, it could mitigate stress or 
anxiety potentially experienced by these individuals during a traditional 
face-to-face therapy (Goodwin, 2008). Many researchers are also inter-
ested in alternatives to pharmacological treatment of ADHD symptoms 
(e.g., methylphenidate) which can be associated with side effects 
(Schachar, 1997). Neurofeedback training seems to be a promising and 
dominating solution but the included studies report inconsistent results 
regarding its effectiveness. For instance, in a study by Wang and 
co-authors (Wang, 2021) parents reported fewer ADHD symptoms in 
their children after EEG neurofeedback training. Moreover, following 
the intervention, the topological properties and flow gain in partici-
pating individuals became close to those of healthy controls. On the 
other hand, Purper-Ouakil and colleagues (Purper-Ouakil, 2022) failed 
to demonstrate its non-inferiority compared to methylphenidate. Also, a 
study by Arnold and associates (Arnold, 2021) did not support a specific 
effect of deliberate theta/beta-ratio neurofeedback at either treatment 
end or at 13-month follow-up. 

Most of the studies covered in this review focused on detecting a 
specific NDD, rather than treating symptoms and difficulties related to 
it. Data used for diagnostic research often overlapped among the pub-
lications, as it frequently came from the same open-source datasets 
containing individuals’ brain structure and activity information. What 
differed, was the developed algorithms and approaches for its processing 
and analysis that led to obtaining different results. Applying machine 
learning algorithms to brain data turned out to be the most dominating 
approach within the included studies. It is a promising way to overcome 
potential bias in the diagnostic process. Other investigated markers 
included eye-gaze features (e.g., gaze preference patterns, pupillometric 
variation during a visuospatial working memory task), motor skills, 
vocal features, behavioral features from home videos, or language skills. 
It can be observed, that in most of the studies, covered in this review, 
researchers trained models that could successfully differentiate between 
cases and controls, confirming a big potential of technology use in NDD 
diagnosis. 

The biggest advantage of using technology for NDD detection is that 
it may be objective and less dependent on the experience or knowledge 
of a clinician, as well as less prone to mistakes. As shown by Washington 
and colleagues (Washington, 2021), machine learning classification 
based on features extracted by a non-expert crowd achieves high per-
formance in ASD detection using natural home videos of the child at risk. 

Moreover, it maintains high sensitivity when privacy-preserving mech-
anisms are applied. This gives promise for a cost-effective, rapid, and 
mobile diagnosis in the future. Objectivity and automation can also be 
achieved when data gathered by technologies such as MRI, EEG, 
eye-trackers, cameras, or graphic tablets is analysed by machine 
learning algorithms rather than humans. Nevertheless, this comes with a 
cost. Technology-free behavioral assessment conducted by clinicians is 
controlled by them, which was not always possible within the research 
reported in this systematic review. A part of the machine learning 
studies, in which models capable of distinguishing between individuals 
with and without an NDD diagnosis were trained, did not identify spe-
cific markers that led to these decisions. For instance, brain imaging data 
would be fed to a classifier, but the successful classification of cases and 
controls would not be explained in terms of any specific brain regions 
that contributed to the algorithm’s performance. Therefore, no matter 
the reported classification accuracy, this might be a source of skepticism 
among clinicians who would not know what led to a specific diagnostic 
decision. Moreover, some authors report the ability of their developed 
algorithms to detect ASD based on only one marker, such as e.g., head 
turning in response to name. While this is a scalable idea for autism 
detection, giving a diagnosis to an individual comes with a responsibility 
and should be well understood and backed-up with enough observation. 
It is needed to find balance between automation and simplicity of a 
diagnostic process, and its reliability. Especially, given that most of the 
studies only consider differences between an NDD and TD population, 
omitting the fact that in real-world settings there are also many other 
existing conditions that could influence the obtained results. Finally, 
many researchers used fMRI for NDD diagnosis but to capture clear 
images, this kind of scanning requires staying still, which might be 
challenging in population of interest – according to a study by Yerys and 
co-authors (Yerys, 2009) less amount of interpretable data is obtained in 
ASD and ADHD than in TD population. 

Regarding the technology-based treatment, promising results were 
obtained. The included research targeted a wide range of symptoms such 
as, inattention, hyperactivity, executive functions, working memory, 
motor skills, and conduct problems in ADHD, emotion recognition and 
comprehension, anxiety, as well as social and communication deficits in 
ASD, reading skills, visual spatial attention, and verbal working memory 
in dyslexia, motor skills in DCD, speech intelligibility and visual-motor 
integration in intellectual disability, tics in Tourette syndrome, or in-
tensity of stereotypies in Rett syndrome. Most of the technology-based 
interventions covered in this review achieved significant improve-
ments on the targeted symptoms. Furthermore, treatment introduced in 
a form of a virtual reality game, or a therapy with a social robot, espe-
cially when designed for children and adolescents, might seem more 
attractive to the population of interest and can potentially result in more 
engagement during an intervention, which is crucial for its effectiveness 
(Georgeson, 2020). Another advantage of technology use in NDD pop-
ulation is its potential to provide a side-effect-free, at-home treatment. 
For instance, interventions in a form of a game on a tablet that can be 
accessed from anywhere can be a fun, cheap, and effective way to 
improve individual’s functioning and increase the treatment accessi-
bility. Nevertheless, not all of the included studies use a technology that 
is cheap and easy to access. For instance, the use of fMRI is relatively 
expensive and currently the access to it is limited in some regions. 
Therefore, the reported studies that utilize this technology do not 
necessarily improve the often-discussed accessibility to treatment or 
diagnosis of NDDs. 

It can be noticed, that technology that has been commonly used 
within the included studies is not necessarily innovative and has already 
been available for some time, e.g., the EEG was first recorded in 1924 
(Tudor et al., 2005), fMRI has been widely employed in thousands of 
studies since 1990 (Glover, 2011), and the idea of the very commonly 
applied machine learning classifier, namely Support Vector Machine, 
was already published back in 1964 (Chervonenkis, 2013). The potential 
of technology-supported treatment and diagnosis is clear but its 
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usefulness and successful application depends on many factors, such as 
conditions in which the data was gathered (e.g., in resting state, or 
during a specific task), methods of data pre-processing, or targeted 
population’s age and its other characteristics. For instance, transcranial 
direct current stimulation that is known to augment motor learning in 
children with cerebral palsy (Grohs et al., 2019) did not have a positive 
impact on motor function in children 8–12 years with DCD (Ebrahimi-
Sani, 2020). Also, awareness, cognition, communication, social moti-
vation, and autistic mannerism did not improve in 6–12-year-old 
children with ASD after an intervention that utilized a robot with 
cartoon facial expressions and a tablet (Li, 2019) but significant im-
provements in joint attention initiations and functional play behaviors 
were found, when a social robot was used with ASD children aged 4–6 
years (So, 2020). Similar variety can be observed in diagnostic studies 
that utilized the same technologies, such as fMRI or EEG but obtained 
different results. 

From a research perspective, most of the approaches presented in the 
included studies still need more evidence to be integrated into health 
systems. The studies should be replicated and tested on bigger and more 
representative groups. There is a need to include more female partici-
pants, adults with NDDs, as well as individuals with commonly occur-
ring comorbidities. Moreover, the variety of included protocols makes it 
very hard to conduct a meta-analysis that could lead to more direct, 
clinical implications. Therefore, in order to be able to draw conclusions 
about the efficacy of a particular technology and improve the outcomes’ 
interpretability, a large number of studies with similar protocols should 
be conducted. From a clinical perspective, the use of technology for a 
faster, cheaper, and more objective diagnosis, or fun, engaging, and side- 
effect free treatment is tempting and may help professionals in their 
clinical practice, but should be treated with caution until more studies 
are conducted. Several evidence-based interventions that target symp-
toms and difficulties associated with NDDs, are already available and the 
evidence of their efficacy is far more robust in comparison to those 
available for the new technologies. Nevertheless, since social robots, 
tablets, as well as other introduced technologies are considered safe, and 
in the worst-case scenario simply ineffective or unpleasant (e.g., the 
transcranial magnetic stimulation), they could be potentially added to 
the already existing standards. Also, machine learning introduced into a 
diagnostic process could be used as help or assistance to the clinicians 
but is far from replacing them. Not only because of the poor quality of 
many studies, which makes the results less trustable, but also due to the 
fact that researchers often do not present ready diagnostic systems that 
could actually be shown to and used by the specialists. To investigate the 
real impact of technologies on users and families, research should start 
moving from the labs to the clinical context and the real-world settings. 
Studies that investigate the actual use of the presented technologies 
from the perspective of their cost and possibility of inclusion in clinical 
protocols, still need to be conducted. The potential cost savings for the 
families and/or health systems should be further explored. Moreover, 
the acceptability of the presented technologies needs to be investigated 
from the perspective of their potential users (individuals with NDDs, 
carers, professionals), which was often missed in the included studies. 

What can be observed in this review is a smaller number of included 
studies from 2020 (n = 40) which might be a result of the COVID-19 
pandemic that interrupted data collection of many researchers. Never-
theless, after the initial adjustment period, when the scientists often had 
to reorganize their work, a peak of newly published studies could be 
observed in 2021 (n = 128). This might be a result of the lockdowns all 
over the world and researchers spending more time on writing papers 
rather than collecting data. It is also not surprising that the open-source 
datasets such as ABIDE, or ADHD-200 were widely used in the light of 
the face-to-face interaction limitations. Applying machine learning al-
gorithms to the already existing data allowed scientists to develop 
automatic diagnostic models for ASD and ADHD detection. 

4.1. Limitations 

42.1 % of the included studies were conducted either in the USA 
(n = 50) or China (n = 43). Research was scarce especially in Africa 
(n = 3), where two studies came from Egypt and one from South Africa. 
According to a report about the technology and science state in Africa, 
these are the two countries that produced above 50 % of the whole 
continent’s publications in the years 2000–2004 (Pouris and Pouris, 
2009). Future research should seek to balance these inequalities. 
Moreover, one of the biggest limitations of the included studies is their 
low quality and a high risk of bias. For instance, only 1 out of 38 
included RCTs had a low risk of bias, 11 raised some concerns, and 26 
were rated as having a high risk of bias. Some studies did not take into 
consideration participants who dropped out before the end of an inter-
vention, and many did not include enough information about the stud-
ied population characteristics such as age and gender, or the used 
methodology. A frequently occurring issue was analyzing only a part of 
an available open-source dataset and not providing a rationale for it. 
Other problems included missing inclusion and exclusion criteria or 
outcome assessment methods descriptions. Furthermore, most of the 
studies lacked a pre-specified statistical analysis plan which automati-
cally raised bias concerns. Also, 68.3 % (n = 151) of the studies did not 
state who the operator of the applied technology was and 41.6 % 
(n = 92) did not describe the setting in which it was used. The repre-
sentativeness of the participants also raised concerns in many cases. One 
of the common issues was a lack of female subjects who were widely 
underrepresented in the included studies. Also, the research that focused 
on diagnosis often excluded participants with various comorbidities that 
are common in the NDD population. This limits the usefulness of the 
developed tools for clinical practice. Moreover, many of the included 
technology-based intervention studies were conducted on small groups 
of individuals. Taking the above into consideration, it is clear that more 
high-quality research is needed involving large, representative, and 
well-described samples. In order to reduce the risk of bias, it is crucial 
that the researchers pre-register their analysis intentions and report the 
used methodology in more detail. Also, missing outcome data should not 
be ignored and appropriate analysis methods should be used. Further-
more, when a certain technological intervention can be conducted at 
home, it is important to verify whether it was implemented according to 
the protocol. It is worth noting, that in some cases, the high risk of bias 
might also be a result of poor reporting of the conducted study rather 
than wrong methodology. 

A limitation of the present systematic review is the already 
mentioned heterogeneity of the included research that makes it difficult 
to compare the obtained results and draw common conclusions 
regarding the effectiveness or utility of a specific technology for a 
treatment or diagnosis of NDDs. Multiple meta-analyses with more strict 
inclusion criteria need to be conducted so that technology-based inter-
vention and diagnosis can be moved from the field of research to an 
actual clinical practice. 

5. Conclusions 

The current systematic review offers a picture of the rapidly 
spreading use of technology in NDD diagnosis and treatment. It presents 
findings from a large variety of both interventional and observational 
studies published between years 2019 and 2022, showing a great 
research interest in this field. This is, to our knowledge, the most 
updated systematic review in this field. Even though drawing conclu-
sions regarding the efficacy and utility of a specific technology for an 
NDD assessment or treatment is difficult based on this review, many 
scientists present promising results that are worth further exploration. 
The proposed approaches might become a part of clinical practice in the 
future and a source of inspiration for further research. Nevertheless, if 
new technological approaches were to gain trust of clinicians and be 
used in real-world settings, more high-quality studies are needed that 
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would provide reliable results, generalizable to the entire heterogeneous 
NDD population.1 
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